POSITION STATEMENT

 How Well Technology Supports Software

Evolution
Dr. Rajesh Subramanyan, Siemens Corporate Research, USA.

rajesh.subramanyan@siemens.com
Software evolution is the process by which programs change due to changing requirements or inherit characteristics from previous programs. Managing software evolution should be central to the development process, otherwise systems become more complex, fragile, and unreliable. Project management across the industry have found that that a large cost and effort in large projects goes towards maintenance and evolution of existing software systems instead of development of new systems from scratch.
Technology and tools are valuable in supporting software evolution. Tools should be scalable, efficient, usable, and flexible. Examples of flexibility are program language independence, user customizable, applicability across different stages of evolution, interoperability with other tools, scalability to large and complex software systems with multiple developers, usable for static (design-time) and dynamic (run-time) evolution, and support all phases of application lifetime.

Tracking architectural decay, system dependency analysis, and project data for analysis are some of the areas where technology, tools and techniques can support software evolution. Formal techniques lead to tools for building robust and efficient large complex systems, and applying techniques such as virtual slicing for change impact analysis. Formalisms can provide domain independent support for software evolution. A unifying framework allows the design of a coherent set of tools, each tool supporting a specific aspect of evolution that can integrate easily with each other.

Technology can help software evolution in several areas such as query engines for post-evolution analysis and reverse engineering; run-time architectural reconfiguration for systems that cannot be shut down; traceability support from analysis to design; model transformations; legacy software migration; analysis of the evolution of software artifacts at all levels including requirement specifications, meta-models, architectures, software implementation, test cases, documentation, bug reports, version control information, log files, and release histories; consistency maintenance; conformance checking of architecture, design and implementation; impact analysis, effort estimation, cost prediction, evolution metrics; traceability analysis & change propagation; configuration management; run-time adaptation and dynamic configuration etc.
Software metrics can be used for software evolution management. For example, system quality at design phase from architecture (instances of design patterns) can be matched with quality from implementation phase, and compared with data from previous project development history in order to predict quality of ultimate system.

Feedback loops with the development process should be used to control and delay complexity. A system becomes unreliable with time unless specific work is executed to maintain or reduce it. Formalisms are important and lead to integrated tools. Investing more effort alone is inefficient. This is analogous to the Brooks law says “adding manpower to a late software project makes it later”. This statement is applicable to software evolution as well. Technology may be one answer.
